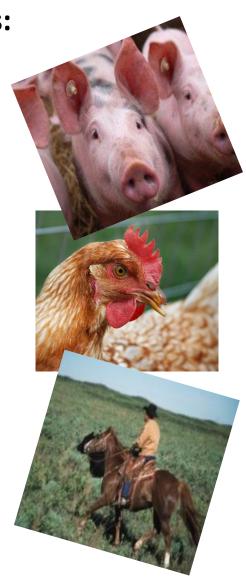


Animal and Plant Health Inspection Services (APHIS) Veterinary Services (VS)

Influenza A in Swine Collaborations: a Pioneering Multi-Agency One Health Partnership

2009-2021


John Korslund DVM

One Health Coordinator (acting)

Office of Interagency Collaboration

Strategy and Policy Unit

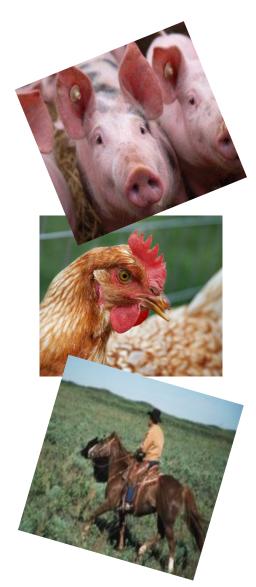
Veterinary Services

Influenza A in Swine Collaborations: a Pioneering Multi-Agency Partnership in One Health

2007-2021


Partners:

- USDA-APHIS-VS-NVSL and NAHLN
- VS commodity and surveillance staffs
- USDA ARS
- CDC Influenza Division
- Multiple State animal and public health units and their umbrella organizations
- Swine commodity groups


Animal and Plant Health Inspection Services (APHIS) Veterinary Services (VS)

Influenza A in Swine Collaborations: a Pioneering Multi-Agency Partnership in One Health


Surveillance Objectives

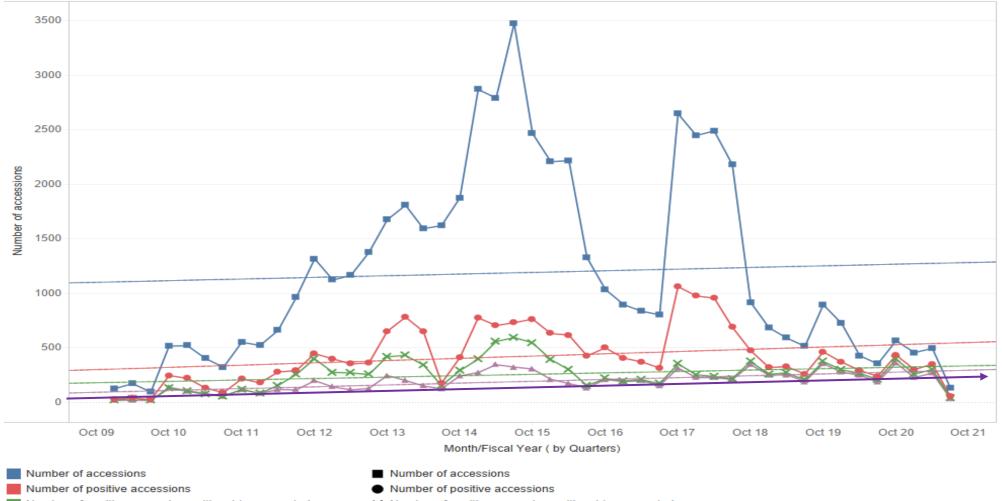
- 1. Monitor genetic evolution of endemic IAV in swine to better understand endemic and emerging influenza virus ecology;
- 2. Make influenza isolates from swine available for research and establish a data management system to facilitate genetic analysis of these isolates and related information; and
- 3. Select proper isolates for the development of relevant diagnostic reagents, updated diagnostic assays, and vaccine seed stock products.


Animal and Plant Health Inspection Services (APHIS) Veterinary Services (VS)

Influenza A in Swine Collaborations: a Pioneering Multi-Agency Partnership in One Health

Additional Outcomes:

- 1. Joint AH-PH investigations of variant influenza (swine origin) influenza cases in humans
- 2. Outstanding laboratory and policy staff collaborations re: influenza as a shared virus (poultry also brought into discussions)
- 3. Greater understanding among producer, veterinary and public health groups re: influenza in swine
- 4. International leadership in multispecies influenza molecular epidemiology and analysis


The Process

- Utilize producer submitted sick pig samples
- Reimburse NAHLN's for eligible Matrix CT workups:
 - Data submission to USDA
 - VI and subtyping PCR
 - H and N sequencing, with GenBank data submission
 - sample submission to NVSL
- NVSL performs WGS on selected samples
- ARS utilizes VS data and GenBank sequences for detailed analytics
- CDC Influenza Division and Lab collaborate with ARS, NVSL and VS in data exchange, case investigations, monthly seminars
- Cost shared producers, labs, VS, ARS, CDC

12 years of growth- from 0 to 100 sequenceable samples per month

Accessions submitted, subtyped accessions, positive accessions, and VI positive accessions over time with trend lines, FY 2009 through Q3 FY 2021

- Number of positive accessions with subtype reported
- Number of virus isolation positive accessions

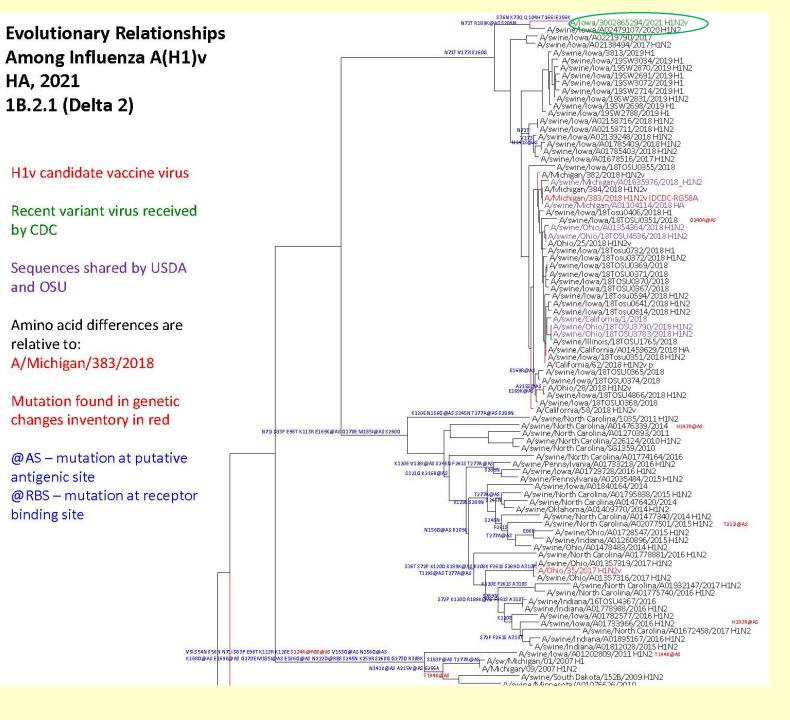
- X Number of positive accessions with subtype reported
- Number of virus isolation positive accessions

USDA IAV-S Viral Repository

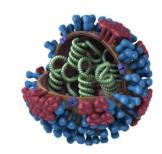
- Maintained at NVSL
- Available for researchers and commercial vaccine reagent production
- Linked to GenBank accession #'s for referencing of genotype
- Table 5. Total number of subtyped isolates available through repository from 2009-Present
- Subtyped isolates available through repository

• H3N2	2,462
• H3N1	22
• H1N1	3,173
• H1N2	2,941
Mixed	302
• TOTAL	8,900 8,

Influenza A(H1)v virus summary – reported January to September 2021


Case Collaboration

CDC Influenza Lab Shared Report – recent world H1 variants


Country	Subtype	State	Age (yrs)	Sex	Onset date	Exposure	Confirmed/ Reported	lsolate available	HI test (date)	Strain name
Germany	H1N1v (1C.2.1) EA avian	Mecklenburg- Western Pomerania	17	м	18-Apr- 2021	Exposure to swine	Robert Koch Institute	no	no	A/Mecklenburg- Vorpommern/1/2021
Canada	H1N1v (1A.3.3.2) pdm09	Manitoba	?	?	2021	Exposure to swine Exposure to swine	Public Health Agency of Canada	yes	Yes (6/6/2021)	A/Manitoba/02/2021
	H1N2v (1A.1.1) Alpha	Manitoba	?	?	2021					A/Manitoba/01/2021
Denmark	H1N1v (1A.3.3.2) pdm09	Zealand	73	F	21-Jan- 2021	No exposure to swine reported	IHR National Focal Point, Denmark	no	no	A/Denmark/1/2021
USA	H1N1v (1A.3.3.3) Gamma	North Carolina	55	м	24 Nov 2020	Exposure to swine	IHR National Focal Point, USA	yes	Yes (4-19-21)	A/North Carolina/15/2020
	H1N1v (1A.3.3.3) Gamma	Wisconsin	7	F	31 Mar2021			yes	Yes (4-19-21)	A/Wisconsin/03/2021
	H1N1v (1A.3.3.2) pdm09	lowa	68	м	8 Apr 2021			yes	Yes (7-20-21)	A/Iowa/02/2021
	H1N2v (insufficient data)	Ohio	6	м	24 Mar 2021			VNR	No	A/Ohio/1/2021
	H1N1v (1A.3.3.3) Gamma	Wisconsin	40	F	07 <mark>/29/202</mark> 1			yes	pending	A/Wisconsin/04/2021
	H1N1v (1A.3.3.3) Gamma	Wisconsin	89	F	08/03/2021			VNR	no	A/Wisconsin/05/2021
	H1N2v (1B.2.1) delta 2	lowa	12	м	08/23/2021			yes	pending	A/lowa/3002865294/2021
China	H1N1v (1C.2.3) EA Avian	Shandong	2	м	1-Jan-2021	No exposure to swine reported	National Health Commission, China	no	no	A/Shandong/00204/2021
Taiwan	H1N2v (1A.1.1) Alpha	Taiwan	5	F	12-Mar- 2021	Exposure to swine	Department of Disease Control	pending	pending	A/Taiwan/1/2021

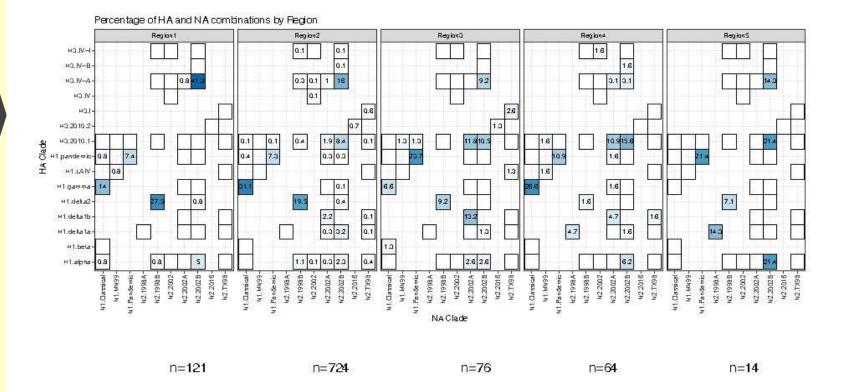
*Blue font indicates new data since February 2021

CDC Lab phylogenetic tree human variants' location within swine phylogeny

USDA ARS Applied Research for animal and public health

Swine Influenza Virus Surveillance

Q3 FY2021 (April – June) Prepared: Sept 10, 2021


USDA-NADC Team USDA-NVSL USDA-NAHLN Laboratories USDA-SPRS US Swine Producers and Veterinarians

Data Parsing for Improved Understanding

Regional Data: Apr 2020 – Mar 2021

Lessons Learned:

- Don't do this!!
- Patience with stakeholders
- Talk through differences
- Seize upon opportunities
- Mutual respect always
- Look to add collaborators

