

Stewarding One of Healthcare's Anchors: Antimicrobials

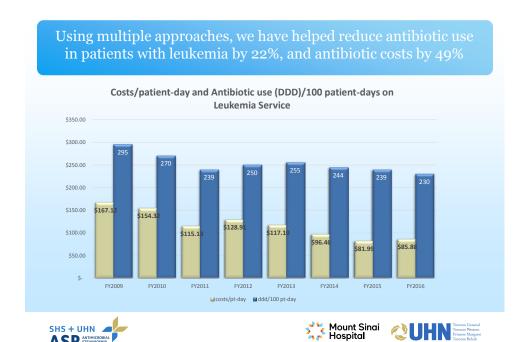
Andrew M. Morris, MD SM | Antimicrobial Stewardship Program Sinai Health System | University Health Network

andrew.morris@sinaihealthsystem.ca @ASPphysician

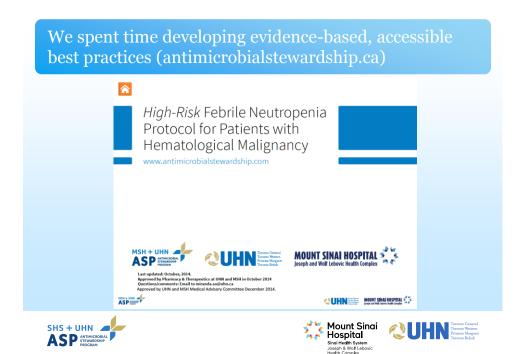
Clinical Operational Research Learners Clancer Care Complete Carcer Care Solid Organ Complete Complete Carcer Care Solid Organ Complete Complete

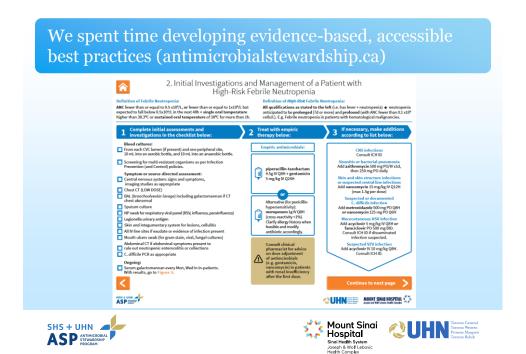
Our program was 2 people rounding daily in the ICU here at Mount Sinai Hospital 8 years ago

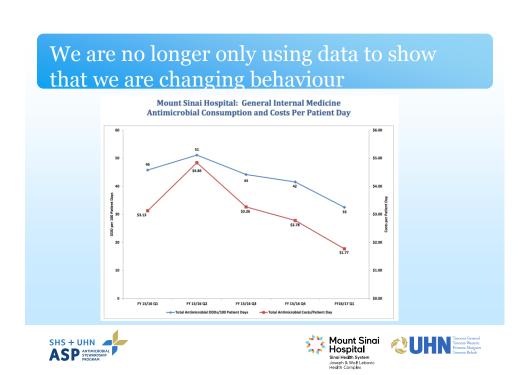
	20	08	2009				
	February (DDD/100 pt days)	March (DDD/100 pt days)	February (DDD/100 pt days)	March (DDD/100 pt days)			
Antibacterials That Cover Non-Lactose Fermenting Gram Negative Bacilli	53.55	56.46	45.59	45.09			
Antibacterials That Cover Lactose Formenting Gram Negative Bacilli	38.76	30.54	36.83	45.40			
Ratio of NLF Covering/LF Covering Antibiotics	1.3816	1.8487	1.2379	0.9932			
Antimicrobial Costs	\$36,1	78.93	\$19,102.31				

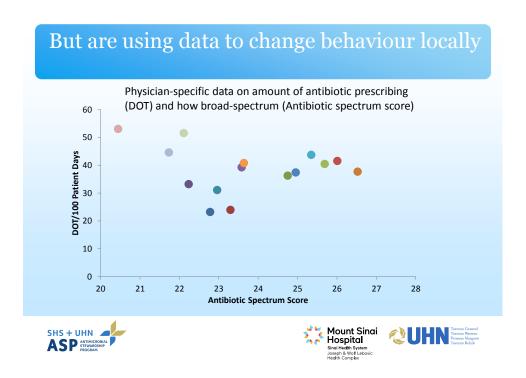

and has grown in complexity, and in volume

Indicators	FY 08/09	FY 09/10	FY 10/11	FY 11/12 FY	FY 12/13	Y 12/13 FY 13/14	FY 14/15	FY 15/16	FY16/17 Performance					YTD of
	(Pre-ASP)								Q1	Q2	Q3	Q4	YTD	Previous Year
Antimicrobial Usage and Costs														
Total Antimicrobial DDDs/100 Patient Days	177	171	144	167	170	172	164	156	142	142			142	162
Systemic Antibacterial DDDs/100 Patient Days	142	128	111	128	127	123	136	116	108	106			107	128
Systemic Antifungal DDDs/100 Patient Days	31	24	20	33	35	41	25	32	29	26			28	30
Total Antimicrobial Costs	\$332,724	\$285,975	\$193,129	\$279,859	\$291,470	\$424,044	\$232,814	\$274,258	\$59,907	\$53,895			\$113,802	\$117,348
Total Antimicrobial Costs/Patient Day	\$69.01	\$59.23	\$40.95	\$59.22	\$62.37	\$85.36	\$62.54	\$61.45	\$49.55	\$46.91			\$48.26	\$57.44
Systemic Antibacterial Costs	\$174,339	\$142,134	\$95,773	\$125,339	\$134,811	\$108,886	\$92,928	\$68,246	\$15,318	\$14,278			\$29,596	\$42,209
Systemic Antibacterial Costs/Patient Day	\$36.16	\$29.44	\$20.31	\$26.94	\$28.85	\$21.92	\$20.71	\$15.29	\$12.67	\$12.43			\$12.55	\$20.66
Systemic Antifungal Costs	\$143,100	\$132,519	\$88,998	\$141,877	\$144,811	\$296,573	\$134,504	\$189,661	\$42,494	\$35,494			\$77,988	\$65,693
Systemic Antifungal Costs/Patient Day	\$29.68	\$27.45	\$18.87	\$30.50	\$30.99	\$59.70	\$40.53	\$42.50	\$35.15	\$30.89			\$33.07	\$32.16
Antibacterial Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	111	109	115	107	105			106	104
Antifungal Days of Therapy/100 Patient Days*	n/a	n/a	n/a	n/a	n/a	17	21	27	20	21			20	19
Patient Care Outcomes														
Hospital-Acquired C. difficile Cases (rate per 1,000 pt days)	NA	NA	NA	5 (1.07)	8 (1.71)	4 (0.91)	7 (1.59)	5 (1.12)	0 (0.00)	0 (0.00)			0 (0.00)	3 (1.47)
ICU Average Length of Stay (Days)	5.84	5.57	5.67	5.51	5.24	6.10	5.26	4.45	4.18	4.33			4.26	3.71
ICU Mortality Rate (as a %)	20.1	17.6	16.3	16.5	17.04	15.3	13.9	14.2	9.5	12.7			11.1	13.8
ICU Readmission Rate Within 48 Hrs (as a %)	3.2	2.9	2.7	2.7	1.86	3.2	2.6	2.1	3.2	0.0			0.9	2.4
ICU Ventilator Days	NA	3286	2934	2677	2749	3069	2597	2504	552	616			1168	1025
ICU Multiple Organ Dysfunction Score (MODS)	4.00	4.04	4.12	4.25	4.62	4.87	4.73	4.43	3.6	3.95			3.78	4.28



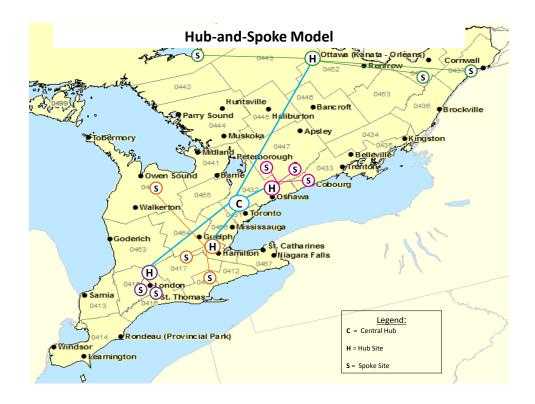


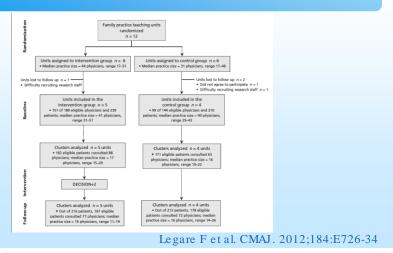

ASP ANTIMICROBIAL STEWARDSHIP PROGRAM



ARTIC (Adopting Research To Improve Care) starting off with a model that looks right

ARTIC: then putting the framing elements in place




- Pilot project led by Dr. France Légaré for Primary Care ASP in Family Practice Teaching Units in Québec
- focused on ABx use in acute respiratory infections

Legare F et al. CMAJ. 2012;184:E726-34

Primary Care Antimicrobial Stewardship

- Pilot project led by Dr. France Légaré for Primary Care ASP in 5 Family Practice Teaching Units (77 MDs) in Québec
- focused on ABx use in acute respiratory infections
- Intervention: 2h online tutorial → 2h interactive seminar about shared decisionmaking

Legare F et al. CMAJ. 2012;184:E726-34

intervention, by study group, family practice teaching unit, type of physician and patient age group % of patients deciding to use antibiotics immediately after consultation At baseline After intervention Intervention Intervention Control Control Absolute Variable n = 5n = 4n = 5n = 4difference risk* (95% CI) Teaching unit All units 41.2 39.2 27.2 52.2 25.0 0.5 (0.3 to 0.7) Type of physician Resident 0.6 (0.4 to 0.9) Teacher 44.1 36.8 25.7 56.3 30.6 0.5 (.3 to 0.7) Patient age group

26.6

27.1

Legare F et al. CMAJ. 2012;184:E726-34

24.1

38.4

Note: CI = confidence interval. *Adjusted for cluster design, ba

Adults

Children

41.9

40.0

39.8

36.8

50.7

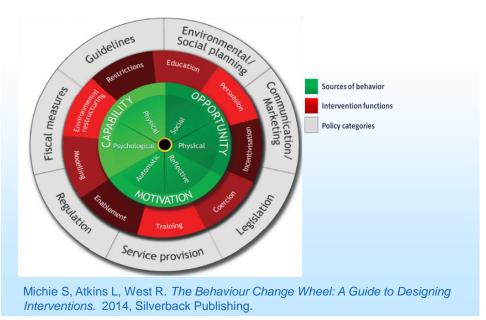
65.5

0.5 (0.4 to 0.8)

0.4 (0.3 to 0.7)

Primary Care Antimicrobial Stewardship

- Pilot project led by Dr. Warren McIsaac for Primary Care ASP in 3 Academic Family Health Teams
- using education, decision aids, audit and feedback to change behaviour (cough, sinusitis, sore throat, urinary tract infectⁿ)
- funded by SHS and UHN Alternative Funding Plan Innovation Fund

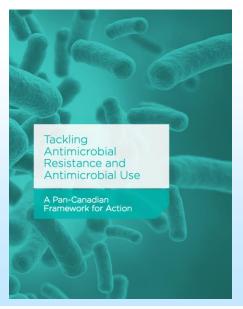


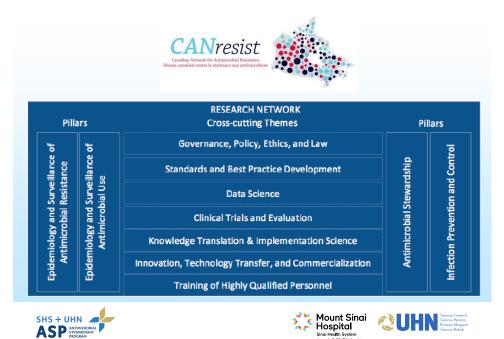
- being expanded to ~60 family physicians around GTA affiliated with the UTOPIAN research platform
- being rolled out over next 2 years
- will reduce to just respiratory tract conditions

JEDI and SABR

- JEDI = <u>Judicious Evaluation of antimicrobial Decision making</u>
 - Weekly audit and feedback of appropriateness of antimicrobial prescriptions
- ♣ SABR = <u>Stewardship At Bedside Rounds</u>
 - Baseline mapping of decision-making
 - Introduction of nurse into an active role in stewardship
 - Integration of antimicrobial decision making framework into team rounds
 - Shift to ASP team nudge

ARTIC: then putting the framing elements in place





Summary

- AMR and antimicrobial stewardship is, primarily, about behaviour change
- Antimicrobial prescribing behaviour is complex, and change requires a variety of approaches (cf. The Behaviour Change Wheel)
- of making a huge difference in Canada

